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PROBLEM OF FAST ACTION IN A PLANE

A, 5. Shmyrov

1. Statement Of‘thE‘PPOblem‘of'Dptimal”spéed‘of
- Response

e

|

Let the point (xl, XZ) of plane Rzmcorrespond to the state
of some system, and the motion of the system be described by the
equations

Lot - e

-f4=.f1 (%1, xy, 1),
) ff?f?ﬁ(xn Xy, 82},

-

(1.1

where (*) designates the‘differentiation by argument t, u--controls
acquif?ng the value from some subset U of Euclidian space. The
functions fl and f, are assumed continuous together with the first
‘partial_derivatives with respect to the variables %, and x,. We
must select . such piecewise continuous vector-function u(t) whereby
the system transfers from the initial state to the origin of the
coordinates with the least increment in the argument. Since in
practice, the argument most often is time, then the formulated PYo-
blem has received the name of a problem of optimal speed of re-

sponse.

Equations (1.1) for each point (xl, xzj assign the mapping of
the set U on the plane. Let us designate by V(xy, %,) the image
of the set U in such mapping. The problem of. optimal speed of re-
sponse can be stated differently. Namely, to‘put in correspondence
to each point (xl, xz) a set V(xl, Xz). In_this case, we will not
be seeking a control function, but the optimal selection of velo-
city from the set V. Henceforth, both methods of stating the prob-

lem will be used.



Let us examine, together with the initial system with equa- /58
tions (1.1), another system with equations defining at each point
(Xl, Xz) a set Vl(xl, XZ)' Let us plot the limitation in phase
coordinates: (xl, XZ) { X, where'the set X is previously selected.
Now let for every (xl, xz)'{ X

‘ —V(xn _xz) c:<-'v"'1_{x,, xg)._' ﬂ B . (1.2)

B L T — ————— e
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Then, if some trajectory is realized by both systems with an identi-
©all increase in the argument and is optimal for the secondysystem,

it is also optimal for the initial system.
Actually, condition (1.2) signifies that the second system in
any direction can move with less velocity than the initial, whence

follows the assertion.

2. Definition of an Auxiliary System

Let us consider the problem of speed of response for a system
whose set V for every point (xl, XZ) { X is a band contained be-
tween two parallel straight lines, and point (0, 0) is an internal
point V. Therefore, for this system at each point of the set X
there is a direction in which it can move without expenditure of
the argument. In other words, after defining the system, we de-~

fined the field of directions possessing this pfoperty.

Now let m be an integral curve of this field of directions
and let m divide the set X into two subsets, so that it is impos-
sible to go from one to another continuously without intersecting
m. Then we can predict a priori on which of the straight lines
defining the set V lies the optimal value of velocity for points

on curve m.

Actually, since (0, Q) is the internal point of the band,
2 -
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then by selecting the value of velocity on one of the straight lines,
we enter that part of set X to which belongs the ultimate point.

The selection of veloeity on another straight line corresponds to

a departure from curve m into an area to which the ultimate point
does not belong. The selection of velocity in the second instance
can not be optimal, since for us to enter into the finite point,

we s8till have to intersect curve m, expending on this action some
increase in the argument, whereas motion along curve m: occurs with-

out loss of argument.

So, this system is tantamount to a system whose set V is a
straight line p: Pl(xl, XQ)Xl t Po(xy, xz)x2 = 1. This factowill
be used later to fulfill condition (1.2).

Let functions Py and.P2 be piecewise continucus together with /59
their first partial derivatives and APl, APZ——theiP increments in
transition through the curve of discontinuity. Then, if every-

where beside the. curves of discontinuity is fulfilled the relation

Com B
dxl_'dxz’ (2-1)
and on the curves of discontinuity is a relation
AR R AP0, | (2.2)

T

where dX;, dx, define the direction tangent to the curve of dis-
continuity, the problem of optimization for this system is degen~

erated. Namely any trajectory which can be realized is optimal.:
Let us now return to the initial problem. Let each point of

¥ be placed in correspondence with a set V and solve the problem

of speed of response. Let us assume that we were.able to construct

a degenerate system (i.e., a system for which are fulfilled con-



ditions (2.1) and (2.2) and the condition on curve m) and such
that the straight line p is a line of support of the convex en-
vedope V. This system will be called an auxiliary. It is now
not difficult to make an optimal selection of velocity: the opti-
maliovalues of velocity belong to the intersection of straight line

p and convex envelope V.

3. Example for Construction of Auxiliary System

Let us consider the problem of speed of respdnse for a system

with controls

a LB 1 R T L ey
M u
.?C] = —————_ *
F1{xy, xg)”
; (3.1)
. J":(}: l—u i
- el xo)

where u { [0, 1] and ¢l, ¢2 > 0. The set V for this system is a
fragment whose ends lie on half-lines Ky = 0, %X > 0 and %7 = 0,
%, > 0. This system can be translated to the origin of the co-
ordinates only from the third quadrant of the plane; consequently,
the auxiliary system must be constructed only in that quadrant.
Let us note that the construction of an auxiliary system is equi-
valent (in this case) to the constructioniiof a synthesis of opti~
mal control, i.e., to the definition of control as a function of

phase coordinates.

Let us construct the auxiliary system in the small neighbor-
hood of the origin of the coordiriates, more precisely on the inter-
section of the ¢ neighborhood and the third quadrant of the plane;

we will then expand the structure to the remaining area.

9, 3
Bxl Bx2

Let us consider the function w(xl, X,) = By de- /60



finition, this function is continuous. Let (0, 0) < @. Det us
then assume that |

.

Pi=0g,

Pzi?g““(i ® (¥, Xy) dy

e .

(3.2)

We will show that the system defined by formulas (3.2) is auxi-

liary in some small neighborhood of the origin of the coordinates.

Actually, functions P1 and P2 satisfy conditions (2.1) and
(2.2), and due to the continuity of function w there exists a

neighborhood in which P, < $55 consequently, condition (1.2} is

also fulfilled. Curves m are defined by the equation

| Pidx+Pydx,—p, (3.3)

whence is verified the condition imposed on m and line p.

After constructing the auxiliary system, it is easy to define
the control as a function of the variables x; and x,.

Namely u = 1,
- if X, < 0, and u = 0 if X, = 0.

Let w(0, 0) > 0. Then let us assume that

e T et e s ma e -

P =g + j (%, y)dy,

Pr=y R _ (3.4)

By applying reasoning analogous to the preceeding, it is easy
to show that functions Pl and P2 define the auxiliary system. The
optimal control is defined as follows: u = 0 if ®, < 0, u=11if
x2:0.

Now let w(0, 0) = 0. Construction of the auxiliary system
. 5



depends on which set of points defines in the neighborhood of the
origin of the coordinates the equation w(xl, x2) = 0. The con-

tinuity of function w yields, in this case, insufficient informa-
tion on this set. Thus, we will impose additional restrictions on

funetion w.

Let curves 1iLi =1, ..., k), intersecting only at the origin
of the coordinates, cut across neighborhood § into sectors r..
‘ + 10 sector ry is bounded
by straight vline X, = 0 and curve 11; and sector o+ 1

1y and straight line Xy = 0. Curves 1, can be given with the aid

Sector ry is bounded by curves li and 1i
-=-by curve

of equations xq = wi(xz) or X, = xi(xl), where wi and x; are con-

tinuous and monotonous functions, defined for sufficiently small

values of the argument; and Y, >=Y, 1 > ... > Y3 and ¥; < Xp_q -
<Xl.

We will consider that we can always construct a breakdown of
neighborhood 8, which has the aforementioned properties so that
in each sector ri,nfuﬁcﬁion w is either non-positive or non-nega- /6

tive, and in transition through curve 1; the function would change

sign.

Let us construct an auxiliary system based on this supposi-
tion. Let us introduce into our discussion a set of a finite num-
ber of curves n; passing through the origin of the coordinates,
after defining them as follows. Curve.ni coincides with curve li
if in transition from sector r. to sector r.

1+l
sign plus to minus. If the sign changes in the opposite direction,

function w changes

curve n. is defined by the equation

e —————le e — - )

X2

' . X d d _ ) ; , -
(%iumw(y & y) xz (m%n (x130dy)dxp - (3.5)

1=

Curves n. define a new subdivision of the neighborhood into sec-

6 . &



tors ST Sector 5y is bounded by straight line Xy = 0 and curve

ny; sectors s, (i # 1)-~by curves n, and Neyqs sector 8141 by curve
n, and straight line x, = 0.
Now let (xy, %, { si(i # 1). If curve n, coincides with
curve li’ then we assume that
Pl ?11 )
S
2= Fe— e, w (y, Xo) dy. (3.6)

e R e T

If curve n. however, deoes not coincide with curve 1i,Lthen accord-

ingly curve N4 coincides with curve li+1' Then we will assume
that

- - T e e

- Pl-m P+ j w (xl, y) dy
. FEERRED) . '
pz—%

e —— (3.7

Let (x5, X,) £~ s,. If ng coincides with 1, Wwe assume that

P‘““*f o X, ydy. | (3.8)

P
A (3.9)
P2“P2“J‘ m(y, xz) dy
Let (Xlg Xq ) { Sk+1 If ny colincides With lk’ then
Pi=oy+ | wlx,yydy (3.10)

Tglml ’ )
P2$CP2’ . . ’ 7
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~in the opposite situation ¥e find that /82

A=,
ol RUAESEN (3.11)

e . - ey =

Rz i

After applying notions analogous to the case w(0, 0) < 0, it is
not difficult to convinece ourselves that formulas (3.6)-(3.11)

define the auxiliary system.

Therefore, after imposing the restriction on function w, we
were able to solve the problem in the neighborhood of the origin
of the coordinates. Let us now try to expand the found construc-
tion to a wider area. Let us ‘note that if the system is defined

in the form

o

Ay

R
Ly sy
2w,
e (3.12)
or as 5 L P S
| P,
Poss -—‘.::.. f.u LAy
b e, (3-13)

where gy and g, are differentiable functions, then condition (2.1}
is fulfilled. Accordingly, it remains to select such functions

g4 and g, and such curves of discontinuity of functions P1 and P,
which would enable conditions (1.2) and® (2.2) to be fulfilled.

Reversing curves will be called those curves given by the
equations xq = g,(x,) and %, =_g1(x1). In the reversing curves

the relations are fulfilled as follows

T ‘ Pl-"":g,. 1 . (3-14)

ry Fa.
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with whose aid we can construct these curves. The construction
beginsithemoment when condition (1.2) is threatened by nonfulfill-

ment.

The curves of.discontinuity are constructed with the aid of
relation (2.2) and serve to define/iunctions P1 and P2 unequivocal-

ly. ‘

4., More General Case of Problem of Speed of

Response

Let us consider the problem of speed of response for a system
which has a set of V that is a convex pdlygon containing a zero
point. Let d be the number of polvgon peaks and let this number
not change in the neighborhood of the origin of the <cgordinates
Considering the control point a fixed peak of the polygon, let
us constr%ct d Curwesvof;qj which cut the neighborhood into 4 sec-
tors. In each sector we will construct an auxiliary system, tak- /B3
ing the corresponding side of the polygon as the set of V. This
problem can be reduced to problem #3 ﬁith the aid of the appro-
priafe transformation of coordinates. It turns out that the
auxiliary systems constructed independently in each sector define

the total auxiliary system for the problem of this section,

In reality, due to the convexity of the pelygon, condition
(1.2) is fulfilled. Curves 1y are curves of discontinuity, but
they satisfy condition (2.2). Within the sectors, conditions
(2.1} and (2.2) are fulfilled from the construction.

In expanding the construction to a wider area, we must

keep to the same rules as in section 3.

Let us note in concluding that there is no theoretical dif-

e T



ficulty in constructing an auxiliary system, if the functions de-
fining the set V are only piecewise smooth with respect to the

phase coordinates.
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